(3x^4-8x^2-6x+12)+(4x^3-3x^2+7x-15)=0

Simple and best practice solution for (3x^4-8x^2-6x+12)+(4x^3-3x^2+7x-15)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^4-8x^2-6x+12)+(4x^3-3x^2+7x-15)=0 equation:


Simplifying
(3x4 + -8x2 + -6x + 12) + (4x3 + -3x2 + 7x + -15) = 0

Reorder the terms:
(12 + -6x + -8x2 + 3x4) + (4x3 + -3x2 + 7x + -15) = 0

Remove parenthesis around (12 + -6x + -8x2 + 3x4)
12 + -6x + -8x2 + 3x4 + (4x3 + -3x2 + 7x + -15) = 0

Reorder the terms:
12 + -6x + -8x2 + 3x4 + (-15 + 7x + -3x2 + 4x3) = 0

Remove parenthesis around (-15 + 7x + -3x2 + 4x3)
12 + -6x + -8x2 + 3x4 + -15 + 7x + -3x2 + 4x3 = 0

Reorder the terms:
12 + -15 + -6x + 7x + -8x2 + -3x2 + 4x3 + 3x4 = 0

Combine like terms: 12 + -15 = -3
-3 + -6x + 7x + -8x2 + -3x2 + 4x3 + 3x4 = 0

Combine like terms: -6x + 7x = 1x
-3 + 1x + -8x2 + -3x2 + 4x3 + 3x4 = 0

Combine like terms: -8x2 + -3x2 = -11x2
-3 + 1x + -11x2 + 4x3 + 3x4 = 0

Solving
-3 + 1x + -11x2 + 4x3 + 3x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| x+y-z=4 | | 7-2.65z=4.4z | | 3x-7y+4z=11 | | 7x=y+4 | | 12x-4=5x+24 | | 2x+68=5z+119 | | -0.7x^3-2.4x^2+3.1x+4.1=0 | | -x+4=-(2x+2) | | -2x-3y-5=0 | | 16=23a+20 | | 0.5(5x-1)=8 | | 3y-9x=12 | | ln(2x+5)=1.5 | | -3x=-2x+14 | | 2x^2+2x+14=9x+9 | | 4x+4x=3x-8 | | -7(8-2n)=-126 | | 3x-8=4x+4x | | x+3+x+3=3x-1 | | 7x-6x-3=5+80 | | 2p^3=2p(p+2) | | n^2=159 | | 3w=-90.45 | | Z+-3=15.4 | | 160=-8(4+3x) | | 3(4-b)+2=5 | | 7.25p-31p=14.325 | | -7m=-49000 | | -4+2+T=-1 | | 2=0.33h-3-.75h | | 2x^3-10x^2+8x-40=0 | | (x^2+10x+25)(y-3)=220 |

Equations solver categories